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Abstract. We show that the mean quadratic variation of a self-similar measure u
under certain open set condition exhibits asymptotic periodicity. Through a generalized
Wiener’s Tauberian Theorem, we obtain some new identities and equivalences of the
mean quadratic variation of a bounded measure v and its Fourier average H, (T; v)=

=1 L,{KT[\?()C)I2 dx (0 < a < n). They are used to sharpen some recent results of

Tn -
Strichartz concerning the asymptotic behavior of H,(T; y) as T — co, where p is the
self-similar measure as above. In the development some results concerning the open set
condition are also obtained.

1. Introduction

Let p be a o-finite Borel measure on R”, for 0 < a < n, let

Vot i) == || B GOy d

tn + a
where B,(x) is the ball of radius ¢, centered at x. We will call
limsup, o V,(¢; 1) the upper a-mean quadratic variation (m.q.v.) of u,
and simply call it @-m.q.v. if the limit exists. The m.q.v. index of uis
defined to be

inf {a: imsup V,(t; p) > 0},

t—0
which obviously equals to sup{a: limsup,_, ¥, (¢; p) < oo}. If p con-
tains an atom, then the 0-m.q.v is Y |u{x}|* and the index is hence O.
On the other hand, if u is absolutely continuous with density function
h in L?(R"), then, by observing that

im L [ (@, (ords = | hcoras
10 (21)*" Jgn R
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(see [HL] for n = 1), where Q, (x) is the cube centered at x with length
2t on each side, u has m.q.v. index n. In some sense the m.q.v. index
measures the degree of singularity of a measure u on R”,

Let f be a Borel measurable function on R”, we use y, to denote the
measure defined by ,(E) = [ f du for any Borel set E in R". Recently,
STRICHARTZ [S1] observed that several classical identities can be sum-
marized in the following form where 0 < a < n are integers:

lim
T = oo Tn —a

fl ) )P dx = | |fPdu for any fe L (du). (1.1)

x| < T

E.g. the Plancherel identity (a = n, u is the Lebesgue measure); the
Wiener identity for bounded measures, and the Besicovitch identity for
almost periodic functions (@ = 0); the identity of Agmon and Hérman-
der (¢ =0, 1,2, ..., n— 1, uis the surface measure on a C'-submani-
fold). He then introduced the concept of locally uniformly a-dimen-
sional measure and proved among many interesting results that for
such measures

lim sup —
T oo Tr—¢

|, iwyeordr<c [1fPdx  for any fe 1.
x| < T
(1.2)

By using the m.q.v. (actually the mean p-variation) (1.2) has been
extended to the p, ¢ form, and a necessary and sufficient condition of
u for such inequality has also been obtained [L1].

Such inequalities (or identities) can be approached by the mean
quadratic variation through the following equivalence (Corollary 4.5):

lim sup

T~ o0

- , 1
| e ax stimsup L [ 1y, o x,
X< T — n

17— R
as is used in [L1]. The relationship of the two expressions has a long
history. It dates back to WIENER’s generalized harmonic analysis and
his Tauberian Theorem (We call the identity there Wiener-Plancherel
formula [Wi], where a =0, f, and u,(B,(x)) are replaced by more
general functions, and only the limit case is considered).

Following the notations of Hutchinson [H], we let {S;}7_, be con-
tractive similarities on R*, i.e. S;(x) = o, R x + b, j=1, ..., m, xeR",
where 0 < g; < I, R; are orthogonal transformations and b,eR". For
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any positive weights {a;}7_ | there is a unique Borel probablhty measure
i with compact support such that

p=2 aue S
j=1
we will call such u a self-similar measure (with respect to {S;}., and
{a} L)
The similarities {S;}. | are said to satisfy the open set condition if
there is a bounded open set U such that

S; U< U forall j, and {S;U}., are disjoint.

Note that supp (i) = U. .

In [S2], [S3] STRICHARTZ investigated the Fourier asymptotic beha-
vior of self-similar measures. He showed that if {S;}7_, satisfies the
‘strong’ open set condition ({.S; (U)} ', are disjoint), then the asympto-
tic behavior of /i is given by

1
"

where f satisfies ) 4’0" =1, and either (i) ¢(7)=c> 0 and
limg,_, , E(T) = 0; or (ii) g(T) > 0 is a multiplicative periodic function
and lim,_, , (77 |E(r)|dr/r =0, according to { —Ilng;: j=1, ..., m} is
non-arithmetic or arithmetic. _ '

It is also proved in [S3] that if {S;};". | satisfies the strong open set
condition, then for the self-similar measure p defined by the natural
weights (ie. g, =977, j=1, ..., m),

| Jiepa=gm+ED, a3

. I @Fdx = g@@) [1/Pdu+ B for any fe 12
(1.4)

Tn—F

where E(T) — 0 in the above sense.
In this paper we extend the above results through the mean qua-
dratic variation.

Theorem A. Suppose that the similarities {Sj}]'-’;1 satisfy the open set
condition with respect to an open set U, and i is a self similar measure
such that u(0U) = 0, then for B satisfying Z,_Ia o %=1,

im | | B s~ P | = 0
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where either i) P=c¢ >0, if {—Ing;:j=1, ..., m} are non—arithmetic,
or (ii) P > 0 is a multiplicative periodic function with period @ where
(In@)Z is the lattice generated by {—Ing;: j =1, ..., m}.

Theorem B. If in addition the weights are natural, then

lim[ L |1, (B, (X)) dx — P () flflzdu] =0 for allfeLz(d,u).,&

10 | "+ F g

We do not know whether the condition u(dU) = 0 is necessary,
however it is much weaker than the strong open set condition. It is also
true that for most well known cases (e.g. Koch curve, Sierpinski
triangle, etc), the condition is satisfied while the strong open condition
fails. Furthermore we have the following dichotomous result.

Theorem C. Let U be the open set defined in the open set condition,
and let p be a self-similar measure, then either y(0U) = 0 or u(0U) = 1.

We remark that the m.q.v. indices are much harder to obtain for the
self-similar measures that do not satisfy the open set condition. Some
- special cases are considered in [L1] and [L2].

In orde. to transfer the above results to the Fourier asymptotic
averages (hence (1.3) and (1.4) will follow as corollaries and are
sharpened), we establish the following extended form of Tauberian
Theorem which covers, in particular, the periodic case.

Theorem D. The following conditions are equivalent:

o1
lim
t—0 _tn+ﬂ R

IW,() (9 e — P (9| =0,

) !
Iim
T 00 __T”'"ﬂ

jllﬂwﬁb~QGﬂ=m

where P and Q are bounded multiplicative periodic with same period.

" Here W, is an analog of the Wiener transformation on R [Wi], and
is acting on B;(R"): the class of g with bounded a-mean quadratic
averages. As a special case we take g = £, then W,(g) (x) = u (B, (x)) for
almost all x (Proposition 4.3). We remark that several other versions
of n-dimensional Wiener transformation and Wiener-Plancherel for-
mulas have been obtained in [B], [BBE], [Be], [He].
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We organize the paper as following: In Section 2, we discuss the
open set condition and prove Theorem C (Theorem 2.3). Some other
basic properties and relevant results are also presented. Theorem A
(Theorem 3.7) is proved in Section 3, the main idea is to use the
self-similar properties of u to reduce the mean quadratic variation to
a renewal equation. The solution of such equation is well known [F],
and turns out to be the cases (i) and (ii) of Theorem A (The renewal
equation has been used in [La] for calculating the packing dimension).
In Section 4, we define the extended Wiener transformation W,(f) (4.1)
for functions fin B2 (R"), and prove Theorem D (Theorem 4.10) in a
more general setting. Our approach follows from ([T], Charpter XII,
§5). Several extensions of Wiener-Plancherel formula are obtained.
Finally in Section 5, we sum up the previous results so that the
statements for the Fourier asymptotics of self-similar measures follow
readily (Theorem 5.1 and Theorem 5.3).

. Acknowledgement. The authors would like to thank Prof. R. S.
Strichartz for many valuable discussions and suggestions. Also the use
of the Bessel functions for the extension of the Wiener-Plancherel
formula on R” are benefited from a conversation with Prof. J. Benedetto
and Prof. G. Benke.

2. Open Set Condition

For any fixed me N, we use J = (i, ..., ) to denote the multi-index,
|J| = k its length, and A the set of all such multi-indices, where
je{l, ...,m},i=1, ..., k and keN. For any {¢;}eR and for any m
maps S;: R"—->R" i=1, ..., m, we set

C;=C; ...C Sy=S8j0...08;

71 Ti?

Also for any set Ae R" we set A;:= S,(4) (also 4; = S;(A4)) and use
these two notations interchangably.

Let {S;}/., be contractive similarities, i.e. S;x = o, R;x + b;, xe R,
where 0 < g;<1, R, are orthogonal transformations and b,eR”",
j=1,...,m. It is well known that there exists a compact subset £ in
R" invariant under S, i.e. E= )", S;(E) [F], [H]. For any a,> 0,
j=1, ..., m with Z’J": a; =1, there exists a unique Borel probability
measure g with support contained in E such that

/o

m

H= ) ai | 2.1)

j=1
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where u;(F) = u(S;' (F)) for any Borel subset F in R*. A measure,
which satisfies (2.1), is called a self-similar measure. It follows easﬂy
that : :
p= ), ai
=k

where p, (F) = pu(S;' (F)).

The contractive similarities {S;}/_, is said to satisfy the open set
condition if there exists a bounded open set U such that

S,(U)s U and S,(U)nS;(U)= ¢ (2.2)

for all i # je{l, ..., m}. It is proved in [H] that the invariant set E is
contained in U and U' 5=, (U) for each k; if s is such that
> 0! =1, then 0 < w,(E) < o0, where o, is the s-dimension Haus-
dorff measure; if we take a; = g/ (the natural weight), then the self-
similar measure u defined by (2.1) equals cw,|; where
¢ = a&,(E)"'(w,| r means w, restricted on E), hence the measure u
satisfies

H(E) =@ u(E)=a;, and p(ENE)=0 for i#j (2.3)

We do not know whether this holds for arbitrary positive weight
{a}7 | such that )7 = 1, however we have

t—-l

Proposition 2.1. Let u be the invariant measure defined by (2.1) and
U satisfy the open set condition_with p(0U;,n 0U)) = 0 (equivalently,
u(U,nU) =0) for i #j, then y(U) = q,.

Proof. Since
ap(STHUAU) < Y. au(Si ' (Un U)) = u(GnT) =0,
. k

it follows that
p(STHO) = u(ST(UNT) =0 for i#j,
and hence for any j =1, ..., m,
p(@) = ¥ au(S7 () = qu(S " (U) =q. QED.
i=1

In the following, we will prove some dichotomous results for the
self-similar measure y on the open set.U in (2.2). For any set F, we use
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F, &F to denote its closure and its boundary respectively. We begin with
a set theoretic lemma.

Lemma 2.2. Let U be a bounded open set satisfying (2.2), then for
Lj=1,

O ST(UYnU=U.
(i) ST WYnU=¢ fori#j _
(i) S7'(F)n U< F, ST (U\F)~ T < U\F where
F=(,c,0(Up)u (8V).
(iv) OUNE< | J,(0UNnE) <= | ), ,(0(U)NE).

Proof. (i) is trivial since S;! (U;)) = U. To prove (ii) we observe that

otherwise '
STOPNU#¢=UnU#¢=>Un U+ ¢

which contradicts the open set condition.
 For (iii) we let xe S, (F) n U, then S,(x)e F so that S,(x)e dU or
S;(x) e 0U, for some J. In the first case we observe that x ¢ U (otherwise
S;(x)eU; = U), hence xecdU< F. In the second case write
U= Sjo...08, (U). If i = jj, then xe 0(S;,0...0 8, (U)) = F; ifj_;éjl,
then S;(x)edU; (since Un U, = Un U, = ¢, and S;(x)e U,n U) so
that xe OU < F. This completes the proof of the first inclusion. The
second inclusion follows from the fact that x e F implies that S, xe F.

Finally, to prove (iv) we let x€ 8U N E. Since E < U”‘ : Uj, xe U for
some j; that xe OU then implies that xe OUn E. Q.E.D.

Theorem 2.3. Let {S;}_ | be contractive similarities and let U be an
open set satisfying (2.2). Let u be a self-similar measure defined by (2.1),
then either

| u)=1 or pu(U)=0.
Proof. Using Lemma 2.2 (i), (i) we have
pU) =2 au(ST(U) =Y au(ST (U)nU) = au(U). (24

Inductively we have p(U;) = a,;u(U), hence for any k > 1,
2wy =% au).
k

[Tl =k [J]=

Also for any k& > 1,
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u(@V) + 1) = w(@ =1 = U T) =

|J}=

~ u( UkUJ> + u( Ukav}) = u(U) +u< Uké‘w) |

= = 1] =

implies that

©(oU) = ,u< U 6UJ>. (2.5)

|Jl=k

~ Since supp u < E, it follows from Lemma 2.2(iv) that

”(<u!kaU’>\aU> = 0.

Let F be defined as in Lemma 2.2(iii), then the above implies that
U (F\0U) = 0 and hence

p(U\F) = p(U\OU) = pu(U).

If p(U) # 0 we define v = u(U)~" |y p. Using Lemma 2.2 (iii) and the

invariant property of u, we can check that v(4) = Y7, a;v;(A4) for

Borel subsets 4 < U\F, A< F, and 4 < R"\U. Since v is also a

probability measure, the uniqueness of the invariant measure satisfying

(2.1) implies that v = u. Hence u(U) = 1 and the theorem is proved.

Q.E.D. :
The following corollaries follow directly from the theorem.

Corollary 2.4. Under the hypotheses of Theorem 2.3, the measure 1 is
supported by either U or 0U. If S,(U) <= U for some Je A, then
u(l) =1 and p(0U) = 0.

Proof. If U, = S,(U) < U for some Je A, then
HO) = wUp= Y app-S;'(U)>apU)=a,>0. QED.

[T} =J]
Corollary 2.5. Under the hypotheses of Theorem 2.3, the following are
equivalent:
D) u(U) = 1.
(1) u(U) = a; for some (and hence all) i = 1,
(iii) u(8U) = 0 for some (and hence all) i = 1,
Furthermore either one of the conditions above will imply (2.3).
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- Proof. (1) < (i1) follows from (2.4); (i) = (iii) follows from the theo-
rem and (2.4). To prove (iii) = (1), let #(8U) = 0, for some i, then

(W) =p0) = YUy 2 ap(U) = a,

and hence by (2.4), u(U) = 1. . L
The last statement is clear since £ < U, u(E;n E,) < p(Un G,) = 0.
Q.E.D.

As a simple example for Theorem 2.3 we consider S}, S, defined on
R by

1 1 2
S (x) = —x, S, (x) =—=-x+ -,
1 (x) 3 2(x) 3 3

then the invariant set E is the Cantor set. If we let U = (0, 1), and let u
be the Cantor measure (g, = a, = %), then u(U) = 1 of course. On the

other hand if we take ¥V = (0, 1)\ E, then V also satisfies (2.2) but
u (V) = 0. This actually holds in a more general case. '

Proposition 2.6. If {S;}/_ | satisfies the open set condition, then the
open set U can be chosen so that u(U) = 0 for any self-similar measure

u satisfying (2.1).

Proof. Let V be an open set satisfies (2.2), and let U = V'\ E. Then
U is an open set with {S;(U)}/_ , disjoint and u(U) = 0. Also S, U< U
fori=1, ..., m follows from ’

S;(U) = (S;M\(S;E)=V\(EnV)=V\Ec V\E=U. Q.E.D.

Following the notation of [S3], we say that {.S;}7_ | satisfies the stréng
open set condition if there exists U such that {S,(U)}/_ ; are disjoint and
S;Uc U. Let '

d(A, B) = inf{lx — y|: xe A, ye B}
denote the distance of two sets A and B.

Proposition 2.7. If {S,}7= | satisfies the strong open set condition, then
the open set U can be chosen so that u(U) =1 for any self-similar
measure u satisfying (2.1).

Proof.'Let V satisfy the strong open set condition, let 6 =
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=1imin{d(V, ¥)): i #J, i,j =1, ..., m}, the assumption implies.that_
0>0.Let U={x:d(x, V)< d}=2V, then Lo
Uj; {x:dx, V) <goys{x:dx, V)y<ot=U
for any j, and clearly for j # k,
dU, U)zd(V, ) — @6 — & 6>26—(g+0a)d>0.
Hence U satisfies the strong open set condition and that £ < Veu
implies u(U) =1. Q.E.D.

In view of corollary 2.5 and all the standard examples, we see that
1 (U) = 1.is the natural case. We do not know whether in general such
- U can be constructed where {S;}/_, satisfies the open set condition;
nevertheless all of the known examples of self-similar measure x4 do
satisfy the sufficient condition U, = U for some Je A so that u(U) =1
(Corollary 2.4). On the other hand most of the examples do not satisfy
the strong open set condition.

Example 1 (Koch curve).

(a)

(8)

U, ’ U2 \ U,

The contractive similarities are

1 1 . 1
S (x) =—x, S, (x =—e”’/3x+(—,0>,
1 (x) 3 H(x) 3 3

' 1 . 1 V3 1 /2
S, (x =—e—”‘/3x+<—,———), S, (x =—x+<—,0)
5(X) 3 > e 4 (%) R
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for xeR? Figure (a) is the invariant set £ which supports the self-
similar measure u for any positive weights. The open set condition
holds with the open set U taken to be the large triangle with base (0, 1),
as shown in Figure (b). We can see that Uas 1,9 U

Example 2 (Sierpinski Triangle).

Us U

(b)

(@)

Uts,yy
U,

The contractive similarities are

1 1 1 1 /1 1
S (%) zx, S, (x) 2x + <O, 2), S3(x) 2x + (2 2)
for xeR? The open set condition holds with the open set U taken as
the unit square. In this case U, ; = U.

The additional condition 1 (0U) = 0 (equivalently, £ (U) = 1) on the
open set condition will be used in next section. To conclude this section
we will give a few useful lemmas in connection to the multi-indices. For
any 0 < 7 < 1, and for any contractive similarities {S;}— | with contrac-
tive constants {0} ,, we let

A ={JeA: ot <o, <1},

where ¢ = min{g;: j = 1, ..., m}. Note that for each infinite sequence
(1> Ja» ---) With j,=1, ..., m, i=1, 2, ..., there is one and only one k
such that (j,, ..., ) e A ().

Let u be a self-similar measure satisfying (2.1). It 1s clear that u, is
supported by U, so that u is supported by (){U;: |J|=k} and
ZI 51=x@, = 1. The following lemma is used in [H] and [S2] without
proof. For completeness we include a simple proof.
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Lemma 2.8. For any 0 <t < 1, pis supported by | J {(U: JeA (t)} and
ZJeA(t) a;=1.

Proof. Note that A (¢) is a finite set, let K = max{|J|: Je A(D}. For
any JeA(?) appeared in the sum, if |J| < K we replace q, by

"4, 5, the sum is not changed since Y ag sy =a; ) 4= ay.
Continue this process and note that each a,, [ J’| = K must come from
one of the J, JeA. Eventually we have ), o =D,/ -x%
Q.E.D.

The following Lemma is a slight modification of a lemma of
HurcHINSON [H].

‘Lemma 2.9. Suppose that {S;}/_ | satisfies the open set condition with
an open set U, then for any ¢ > 0, there exists an integer K such that for
any 0 < t < 1 and for any Je€ A(¢), there are at most K of J € A(t) with

d(U, Uy) s ct

Proof. Without loss of generality we assume that U is contained in
a ball of radius 1, and U contains a ball of radius r,. For each Je A (%),
U, is contained in a ball of radius ¢ and contains a ball of radius ryo¢.
Suppose there are q of J' e A(¢) such that d(U,, U;) < ct, they are
hence all contained in a ball of radius (3 + ¢)¢, and each of them
contains a ball of radius r, ¢ z. Note that all the U,’s are disjoint by the
open set condition, summing up the volumes, we have

g(ro0t)"< (3 +co)'t".
The lemma follows by choosing K = [((3 + ¢)/c,0)'] + 1. Q.E.D.

‘Lemma 2.10. Suppose further u(0U) = 0, then:
(1) There exists 0 < t, < o, and Jye A(t,y) such that

d(S, U, dU) > 2 t,/o.

(ii) If Je A () can be written as J = (Jy, Jy, J,) for some multi-indices
Ji, J, (they may be empty), then

d(S,U, 8U) > 21.

Remark. Part(i) asserts that if 4 (0U) = 0, we can find at least one
S;, U sufficiently far away from the boundary. The converse of this

statement is also true in view of Corollary 2.4 (since in this case
S;,(U) = U). This lemma is crucial in the estimation in Lemma 3.6.
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Proof. (i) Suppose 1 (0U) = 0, we claim that d(U,, 6U) > 0 for some
Je A (¥). Otherwise d (U, 6U) = Oforany Je A(f)and 0 < ¢ < 1. Since
E<senn U, it follows that for any xe E and ¢ > 0,

d(x, 8U) < sup diam (U)) Jt-dlam U.

Je A(d)

This implies that xedU, hence E < 60U and u(8U) = 1, that is a

contraction. .
By the claim, we now assume d(Uy, , 0U) > 0 for some Jje A. Let

O < to - min{-zgd(UJ(), 6U), QJ(/)}.

and let je {1, ..., m} be such that 0, = min{g,, ..., 0,,}. We can obtain
Jo by adding j repeatedly to Jg so that Jy = (J, ..., j, Jo)e A(t,). Thus

25 _ 4(u,,, oU) < d(U,, V).

(i) For Je A(¢) with J = (J,, J,, J,), we have g, = 0,05, 0, > Qz‘
That o, < t, (since Jye A (¢,)) implies that
Qs = 05,05, Z 0105, = 011,
Hence '
d(S,U, oU) = d(S,,©S; 8, (U), 0U) >
> d(8,,°5,,(U), 0U) > d(S,, 2 5;, (), S, (3U)) =
= 0,d(S,,(U), 0U) = 0, -21,/0 = 2t. Q.E.D.

3. Mean Quadratic Variations

For any positive o-finite Borel measure v on R”, we let, for
O<r<l,

V.(t; v) =

f VA (B, (x)) d,

n+a

and

V,(v) = limsup V,(¢; v).

t—0
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We call V,(v) the a-upper mean quadratic variation of v; B is called the
m.q.v. index of v if ’ ‘

oo, if a>p;

Val¥) = {o, if o< p.

In the following we will relate the m.q.v index with a more familiar
quantity. Recall that the a-energy of a probability measure v is defined

_ dv(x)dv(y)
Ia(v) - JJ |x—-—y|a .

Lemma 3.1. There exist c¢;, ¢, > 0 such that for any probability measure
v on R”,

2 dv(&)dv(m) < V,(t; v) < 2 dv(£) dv(7).
o[ avpamnens<sf| e

Proof. Using Fubini’s Theorem, we have

ﬂ [JJ Xn,09 (8) X500 (1) AV (&) dV(U)] e

tn+ad

| Vo(t; v) =

_ ! fw,,<B,(é)mB,(n»dv(cf)dv(n)

tn+a

where y, is the indicator function of set B and w, is the Lebesgue
measure on R": Note that B,(&) n B,(n) contains a ball of radius ¢/2
if |& — 57| < t. The lemma follows by taking ¢, = ¢/2", and ¢, =2"¢c
where ¢ is the volume of the ball of radius 1. Q.E.D.

Proposition 3.2. Let v be a probabili'ty measure on R".
@) If Vs(v) > 0, then I,(v) = o for all a > p;
(i) If V3(v) < oo, then 1,(v) < oo for all a < B..

Proof. By Lemma 3.1, we have for any 0 <7 <1,

V() <2 | | A av@ v = 2l

and (i) follows. To prove (ii), we fix 0 < A < 1, then
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L<l+ ” —L_ @ avin <
 om=0J amrigie_g<an |E — 1| ’

d 1
< 1 + Z l(m+l)aJ‘J|‘§_m$Ade(§) dv(n) S

m=70
L+ (A D AP-9(v; A™) <
m=0

<1+ (clit")_1< > )1”’““”) sup V(v;t) <. Q.E.D.

m=0 O<t<l

For any Borel subset E, we use dim (F) to denote the Hausdorff
dimension of E. It is known that

dim(E) = sup {a: 1,(v) < o0, supp(v) € E, v prob. meas.}.
As a direct conseqﬁence we have the following result.
Corollary 3.3. Let E be a Borel subset in R", then
~dim (E) = sup{a: V,(v) < o0, supp (V) € E, v prob. meas.}.

For the contractive similarities {S;:j=1,...,m} and weights
{a,:j = 1,...,m}, we let B be the unique real number satisfying

Z aj2 Qj_ﬁ =1
j=1
Proposition 3.4. Suppose that {S,}]_, satisfies the open set con-
dition. Then 0 < B < n and B = n if and only if a; = @'. In this case
the self-similar measure v equals a multiple of the Lebesgue measure
restricted on E.

Proof. That B = 0 is trivial. Suppose that f > n, then Qjﬂ < ¢". The
open set condition implies that ( )7, U = U and U are disjoint, taking
the volumes we have that ) ”_, 0" < 1. Hence

1 1 1

m m Y m 2 m 2 m 2
1=3% a= > (g 2)9j2<<2 af@f”)(Z Qjﬁ> <<Z Qj”) <l
j=1 Jj=1

j=1 Jj=1 j=1

This implies that > 0/ =) o/ = 1 and f = n. Using the equality case

in the Schwartz Inequality, we conclude that g; Qj—5 = Qf, ie a = 9.
The second part follows from ([H], p. 737, Theorem 1 (ii1)). Q.E.D.

8 Monatshefte fiir Mathematik, Bd. 115/1-2
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Let A (¢) be defined as in Section 2, then the same argument as in
Lemma 2.8 yields '
Z a;jo;’=1.

JeA(r)

As a consequence for any 0 < ¢ < 1 we have

<Ll y e« 3.1)

17 JeA®

Theorem 3.5. Suppose that {S;}]_ | satisfies the open set condition with
respect to an open set U, and suppose that u is a self-s{milar measure with
1(@U,N oY) =0, for all i # j, then

0< inf Va(t; u) < sup Vp(t; p) < oo.
O0<txl1

0<t<1
In particular the m.q.v. index of u is B.

Proof. If B =0, then a;= 1 for some j, and q;=0if i #j,so yis a.
point mass measure and V;(z; u) = ¢ # 0. Without loss of generality
we assume that the diameter of U is 1 and 0 < #< n. Note that
supp (1) is contained in |J{U;: Je A(9)}, and u(U)) = a, (Proposi-
tion 2.1), we have

1
(A

Vit 1) = f J @, (B(8) 0 B.() d (&) du(m) >

1 J;()JL 0y (B,(8) B, () dia (&) du (1)

>
(nth ,ne Uy

Note that diam (U;) = ¢, < ¢, B,(£) n B,(n) contains a ball of radius
t/2 whenever &, ne U,. It follows that
c c
A EC W IO AOET D WD
17 re A & neU, t

JeA(D)

where ¢ depends only on #n, and the first inequality follows.
To prove the second inequality we let, for each Je A (¢),

A D) = (T eA®: d(U, Uy) <21},

By Lemma 2.9, A(¢; J) can have at most K members where K is
independent of ¢ and J. Hence by Lemma 3.1,
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Vit 19 <5 [ [ s maan da (€ du(m) =

_t oy f Kot <20 A0 (E) du () <
JeA@) JE

tP eU; JeRn

<< 3 | | a@duin< (3.2)

LI eAlt) JEeU,JdneU,
d(Uy, Uy) <2t

c c
S— Z . aJaJIS—'B Z (a}_'_a}')g
¥ 1 reAl 217 5 reAw
(), Uy) < 21 d(U,, Uy) <2t

c
<S(r > @+ T 3 oa)s
2tP\scAw reacn JeAW) JeA® )
cK

< ——
\tﬂ

Y, aj <ok (by (3.1))

JeA(D)
This completes the proof of the theorem. "Q.E.D.

We now turn to a more accurate estimation of V(u; t) as t — 0
under a slight stronger condition, we first observe that

| [Zan

.
dx =

Ve(t; p) =

1 ™
=52 | B B)dx+ E() =

— Y@ B, DG+ EO = x=50)

=Y a’ 0 V(o7 s ) + E(1), 3.3)

where E(f) = ), ;a,a,E;;(f) with

1
("t 8

E, () = f 1,(B, () 1y (B, () dx.

The main estimation is the following result.
8*
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" Lemma 3.6. Suppose that {S;}]_ | satisfies the open set condition with
an open set U and p(0U) =0, then E(t) = O(t°) as t — 0 for some
e> 0.

Remark. If the strong open set condition holds, then min {d( U,, U, AR
i # j} > 0. Since u;, y;, has support contained in U, and U respectlvely,
u; (B, 00)u, (B, (x)) = 0 for ¢ sufficiently small, and the lemma is trivial.
Proof. Using the same estimation as in (3.2) we have

C C
5O<SY || aw@dm =53 aa.
17 g0 Jees Uy Jnes:(Uy) tr g

where the sum is taken over all pairs (i, J), (j, J') € A(¢) such that
d(S;(U)), S;(Up)) < 2t

Noting that S;(U;) < S;(U), and S,(U;) is disjoint from the interior of
S;(U), we have

d(S(UJ) o(S: U)) < d(S;(U), S;(Up)) <
. Hence
d(U,, oU) < 2t/0,,

the same result holds for J’. We have then by the above and
Lemma 2.9 that

o< Y+ 3 as
2 G, J)e A1) Uy NEA®
d(Uy, 8U) < 2tfg; d(Uy, 0U) < 21tfo;

<€ K
,,< ) D) )a}
2 t Je A(t/g) TeA(t/g)

AUy, V) <21f;  d(Uy, 0U) < 21/,

(see the argument in theorem 3.5). Set

we=t"* > aj.
JeA(D)
d(U,, 8U) < 2t
We show that W (f) = O (¢°) as ¢t — 0, and the proof of the lemma will
be complete. Let ¢, and J;, be defined as in Lemma 2.10, we use J, K J
to mean that J, does not equal to any segment of J. It follows from

Lemma 2.10(ii) that
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Wi <= ¥ ak | (3.4)
17 JeA@) ’
Jp KT

Let £ < ¢y, and let n be a positive integer such that
gt <<y,

For JeA(t), we can write J = (J;, J{) where J e A(,), i.e.,
QL <05, < 1.

Inductively we can write J = (J,, ..., J, J'), seA(t), i = 1, ..., k with
k = [2]. This is possible since

k
Q3.5 = 05 -0 = (01) > 13> 1.

It is also obvious that for any J;, /4, ..., e A(¢,), there exist J’ such
that (J, ..., Ji; J)eA(?). In fact, for each such (J, ..., J),

{(J: (s oo S TNEA@D} = A(t]0y, ... 04)
We hence have by (3.4),

<t Y ai< Y alorf<
A 4

b X JeA(D) JoKIJeA()

2 - 2 - 2 - « 2
< X [“JIQJlﬂ'anQJzﬂ---“JkQJkp' > a,g,,ﬂ]
b # J; JeA(tley ---05)
Ty e JEA(L)

-( > @) T aper’)( ¥ ajef)1-

Jo # J € A(ty) Jo # e Alty) Jo # T € A(ty)
| k Int/2In¢,
— n n
=< 2 anQJﬁ> <c ¢ =15
Jo # T Alty) ,
, )
where ¢ = (Z,O;EJGAOO) a?o;?) < 1, so that ¢ > 0. Q.E.D.
Now we state the main theorem.

Theorem 3.7. Let 8 be such that )7 af o, ¥ = 1. Suppose p(0U) = 0
for some U satisfying the open set condition. Then _

lim (Vp(t; ) — P () =0

for S(‘)mevP > 0 such that the following holds.
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() If{—Ing;:j=1, ..., m} is non-arithmetic, then P(x) = c for some
constant c.

(i) Otherwise, let (InA)Z), A > 1 be the lattice generated by
{—Ing:j=1, ..., m}, then P(At) = P (%)

The proof relies on the féllowing well known theorem on the
renewal equation [Fe]. We will call a function % directly Riemann
integrable if Y. M, Y m, converge absolutely for any s > 0 and

> Mp—m)s—0 as s—0, (3.5)

k= —o0

where M, =sup{h(x): xelks, (k+ 1)sl}, m,=inf{h(x): xelks,
(k + 1) s]}. Note that this definition is stronger than the usual way of
defining Riemann integrable function on the infinite domain [0, c0).
By a direct check, we can see that the property 4 is directly Riemann
integrable is equivalent to 4 is locally Riemann integrable and

Z ”hZ[n,n+1]“oo < 0.

" This class will play a more important role in next section.

| Theorem 3.8. Let o # & be a probability measure on [0, co) and let
S be a bounded measurable function on [0, o). Suppose that f satisfies
the renewal equation

£ = f 6= ) do()do(y) + S(), x>0,

then f=Y*_,S*o" If in addition, S is directly Riemann integrable,
then_ the following holds. '

() If o is non-arithmetic, then f(x) =c + o(l) as x — oo, where
c=[gydoM' 5 S(»da(y).

(i) If o is arithmetic and supp (o) generates a lattice LZ, A > 0,
then @(x)=p(x)+0() as x> o where p(x)=Alfy ydo(MN]™"
.S (x + k) is a periodic function with period A.

Proof of Theorem 3.7. Let o be the atomic measure defined by
o{o} =a’o7 " j=1, ..., m, then by (3.3),

1

A%(f;ﬂ)=f Va(t/s; p)do(s) + E (), 1}>.t>0.

0
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Now let & = —In t, n = —Ins and f () = Vj(u; 1), we can reduce the
above equation to

£(8) = wa<<§— Ddem) + E@5), >0,
where 6(n) = o(e™"). Let S(&) = (£ f(E—m)dE(n) + E(e™%), then
14
f(<§)=L FE—n)de(m+S©, E>0.

The fact that & has compact support implies that (¢ /(& — 1)dé&(n7) = 0
for & large, so that S (&) = O(e~*%) (Lemma 3.6). Hence S (&) and o
satisfy the conditions of the renewal equation, and Theorem 3.8 ap-
plies. That ¢>0 and P> 0 follows directly from Theorem 3.5.

Q.ED.

4. Wiener Plancherel Formula and Tauberian Theorems

In order to transfer the results of the mean quadratic variations to
Fourier asymptotics of self-similar measures u, we need some special
forms of Tauberian theorems. In this section we will proceed with the
following presentation, which covers a larger class of functions other
than f. It generalizes, in some sense, the Wiener-Plancherel formula in
WIENER’s generalized harmonic analysis [Wi] and also the previous
works in [LL] and [CL]. Let '

(”/z)k : irs 12k — 1)/2
J.(r) = e’ (1 —s%) ds, r=0

I(Qk+1)/2)r1/2)J-
(with k > ——%) be the Bessel function of order k. It is clear that
lim,_, o Ji (N)/r*=¢ >0, also for k>0, J(N=0(@F"") as r— ©
(SW], p. 158). Set

E (x) = J e 2" dE VYxeR",
B .

?

where B, = B, (0) is the ball centered at 0 with radius ¢. The following
can be easily checked ([SW], [Wa)).

Proposition 4.1. Let E, be defined as above.
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() (xs) = E,, where x3 is the indicator function of B,.
(i) E, (x) = (t/lxl)ifg(2”f|x|)-

n+1

(iii) E, is bounded, lim, ¢E,(x) >0, and E, (x) (]x]_ *) as
|x| — 0.

For 1 < p < oo and 0 < a < n, we use B” (R™) to denote the space
of functions of fe Lf, . (R") such that

sup
T>1 Tn—a

J | f1? < 0.
By
Proposition4.2. For 1 <p < o0, 0< < a<n, and 6 > 0, we have
Bg’nggBé’ELl’(———jx—).
1 + Ix|n+5

Proof. The first two inclusions are obvious. The last inclusion
follows from the fact that fe B and

VGO s J J
s < e (T LR S 1<
'J‘R'" 1+ |x"*+?¢ I < 1 4 E__':l 1 + Zk("+5) 2k < |3 g 2k +1 -

' . ‘ i - @)k + 1) 1 J’ 1 ‘ QED
< + — )-su < 00. E.D.
( k=1 1~+2k(”+5)> T>I:; T" % Jms<T

For any fe B2(R"), we let

w.(HW = Lnf(X)Ez(X)e“"”dx = (["E)(»)

be the Wiener’s transformation of f, where ¢ denotes the inverse
Fourier transformation of g. By Proposition 4.1(iii), f- E,e L?> (R") and
hence W,(f) is well-defined on B2(R"). The main motivation of in-
troducing the transformation W, is the following simple identity.

Proposition 4.3. Let u be a bounded measure on R, and let f = [i, then
Jor t > 0 and for almost all y (with respect to the Lebesgue measure)

W () () = u(B,(»).

Proof. If follows from the definition that W,(f) f E, = [i-E, and
H(B, ()= (u*x3) = A-E,. QED.
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The following theorem (and also Theorem 4.10) allows us to trans-
form results on the mean quadratic variations to the quadratic means
of the Fourier transformation with respect to appropriate powers.

Theorem 4.4. For fe B?(R"),

sup
T>1 T @

f | f()]*dx =~ sup 1
M<T

0<tg1 gnte

[ 1mn Py, @

Moreover the pair suprs,, SUPy<,<: can be replaced by the pair
lim sup,_, o, limsup, , , respectively.

Proof. Let F(r) = rfs _ |f (rwl’du, then
1

rfvere-nsf ]

n —

If(ru)Izdu]r"*‘dr =

1
=f F(Tryr"—*l4dr. - (4.2)
0
Also letting ¢ = 2, w(r) = r~"J; (2zr), we have
. 2

1

tn+a

.

tn+a

[ sorar=—L [ 1y mcordx -

| R g erpa = [T Rt ar
(4.3)

~ Hence to prove (4.1), we need only prove

o} 1
supf F(Tr)r”’“"lw(r)dr%supf F(Tryr"~*"'dr. (4.9
T>1 Jo T>1 Jo .
Note that lim,_, ,J, (r)/r* = ¢ > 0. There exists a 0 < A < 1 such that
w) =r"J;Q2nrr)>c¢, >0if 0 <r < A. Thus

2.

0 rA
f F(Tryr'~*"'wr)drzc | F(Ir)r" “ 'dr =
0 Jo
1
=c,| F(TAr)r"—* 'dr (4.5)

0

for T > 1, so that
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00 r1 .
supf F(IHr = 'w@dr=cysup | F(TAr)r"~*"ldr>
5 .

T>=1- T=21Jo

rl

>c,sup | F(Tr)r"—* " 'dr. (4.6)

T=1 jo

To prove the reverse inequality we let @& (r) = sup,s ,w(s) be the
smallest descreasing majorant of w. Since w is bounded and
w() =0 "*"Y) as r > 0, so is & Now

J F(Irnr " 'w(r)dr <
0

1 0 2k +1
<a3(0)f F(Ir)yr—""ldr+ ) a~)(2k)J F(Tr)yr"~° 'dr <
0 k=0 2k

1
Sﬁ(O)J F(Tr)r"—°"'dr +
2

+ 3 areag@h [ Py as x)
K=0 o

by a change of variables r = 2**'s on each term, so

_ o 1
SUpJv F(Tr)r"—a—lw(r)dr<c3 Supj F(Tr)rn——a—ldr’
T=21 Jo 0

T=>1

where ¢, = &(0) + z;zo=02(k+ 1)(n—a)a~)(21c) < &(0) + 2“'1 @ () =1 g -
< oo. This completes the proof of (4.4), and hence (4.1).
To show the limsup case we see from (4.5) that for any ¢ >0

. 0 1
sup,J‘ F(Tr)yr"~*"'w(r)dr = ¢, supj F(TAr)yr" =" 'dr =
Tze Jo .

Tze

T> 0l T>o

o 1
= C, SUup J‘ F(Tr)r"'“a—ldr> C, supJ‘ F(Ti‘)rn’_a—'ldr_
0 0

Hence

T— 00~ T o0

o0 1
lim sup J F(Irr—*"'wrdr=c 1imsupJ F(Tryr"=°~'dr.
0 0 .

The reverse inequality follows from (4.7) in the same way. Q.E.D.
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We remark that an analogous case of (4.4) has been proved in [CL],
and the lim sup case in [LLL]. The proofs there are intended to obtain
the sharp isomorphic constants and hence more complicated; they can
be used to prove the present case also.

Corollary 4.5. Let u be a bounded Borel measure on R". Then

sup—— | la@Pdxx swp | BOND,
T>=1 X <T O<t<gtl ¢ R
and
lim sup f GO dx ~ lim sup f (B, ()P dy.
T 0 - xl<T t—0 tn+a R” :

- Proof. These are direct consequence of Proposition 4.3 and Theo-
rem 4.4. Q.E.D. ' ‘

The main purpose in the rest of this section is to prove a Tauberian
Theorem to cover the periodic case which appears in Theorem 3,7(ii)
(of course it will cover (i) automatically). Set -

o0

W(R) = {g: g continuous on R, [g = . & Xx+nlle < 0}

k= —c

Then W (R) is a Banach space, whose dual is given by
E(R) = {p: p regular, |p| = sgplul([k,k + 1)) < o0},

Note that any bounded Borel measurable f can be considéred as an
element in E(R) with [ f|zg, = sup; Z“” lfCo)ldx, and || fllpm <

< [ fllzo wy-

Lemma 4.6. Let A be a closed translation invariant subspace of
L*R) and let ge W (R) be such that g(&) # 0 for all £eR. Suppose
pHeE(R) and g« pue A. Then h+ue A for all he W(R).

Proof. Let F = {he W(R): h= uec A}. Itis clear that Fis a translation
invariant subspace of W (R). To show that F is closed, we let {g,} = F
and g;— g, then
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lgi* pu(x) — gxpu(x)| = ij (gi(y)—-g(y)_)du(x—y)<

k= —o0 Jk

o0

< ) & — 8 Xkl lullx — [k, k+ 1)) <

k= —c0
< g — g”W(R)'2 “.U”E(R)-

This implies that g,* u— g+ u in L* (R), since A4 is closed in L* (R),
g;* ue A implies that g+ ue A, so that ge F. By Wiener’s Second
 Tauberian Theorem ([T], Theorem 7.6), F = W (R), i.e. he ue A for all
he W(R). Q.E.D.

If A= {fe ER): lim, _, , f(x) = ¢ for some ceC}, then the above
lemma is just the standard Tauberian Theorem in the limit form.

Theorem 4.7. Let g W (R) with §(&) # 0 for all £eR. Let ue E(R)
be such that

lim (g# p(x) —p(x)) =0

for some bounded periodic function of perzod a. Then for any he W(R)
there exists a bounded function q of period a sulh that

lim (h* p(x) — g (x)) =0.

Moreover if we write p (x) = el P g (x) =% b ek,
then
b, = h(27rk/a) FeN.
(27rk/a)

Proof. Without loss of the generality we assume that a = 2z, Set
A ={feL®(R): lim (f(x) — g(x)) =0 for some g with period 27x}.

then A is translation invariant. It is also closed in L% (R): for let
{f} € A with f;— fin L* (R), then
lim (f;(x) — q;(x)) =0 for all i,

for some bounded periodic functions {g;}. For any xeR and for any
>0, ’ '
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19:(x) — ¢, = Ig,(x + 27k) — g,(x + 27k)| <
< |fi(x + 27k) — fi(x 4 27k)| + 2. (4.8)

Taking k sufficiently large (k depends on i, j), this implies that {g,} is
a Cauchy sequence, converges to a ¢ in L (R) of period 27. We have
lim, , , (f(x) — q(x)) =0, so that fe 4. Let F = {he W(R): h*ue A},
then F = W(R) by Lemma 4.6 and the first conclusion follows.

To prove the second statement we let he F = W (R) with the cor-
responding bounded 2z-periodic function ¢q. By Wiener’s Second
Tauberian Theorem, there exists a sequence { v} < L'(R) such that
wi*g—h in W(R), hence y*xgsu—hxp in L*(R). Since
im;_, , (W% g% u(x) — ¥;(x)* p) = 0, the same argument as in (4.8)
implies that lim, , ., (y;*p) = ¢ in L® (R). It follows that

2r 2z :
bk=J‘ g(x)e * dx = hmf Wk p(x) e " dx =
0 S0 Jo

= lim a,- (k) = a, lim Y*DE _ ak-E@. Q.E.D
Joeo imeo (k) g (k)

Remarks. 1. Note that if p (x) = c, then ¢ is also a constant function
and g = by, = ay/£(0) = ¢/g (0). _

2. The continuity of g in the theorem can be replaced by the local
- integrability. In this case we can consider §= ¢ * % g, note that

(€)(E) #0 for all £eR and §+ A4 < A, so the theorem applies.

3. For some applications it is more convenient to extend the con-
clusion to include discontinuous / also. We consider such extension in
the following theorem.

Set

o0

W(R) = {g: g is locally Riemann integrable, Y |lgxu+ il < 00}

k= —ao

Then W is the class of directly Riemann integrable functions as defined
in (3.5) for the renewal equation.

Theorem 4.8. Letr ge W(R), g>0 and (&) #0 for all £eR.
Let u = 0 be a regular measure such that lim sup;, o Mlj,j+ 1)< o
and

)}ingo g*pu(x) —px) =0 | 4.9)
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for some bounded periodic function p with period a. Then for any
he W (R), there exists a bounded periodic q of period a such that

lim (h*p(x) —q(x) =0,

and the Fourier coefficients {a,} and {b,} of p, q are related by

b, = ﬁ(27rk/a) reN.

*g@nkia)

Proof. By (4.9), we can show that lim supj_,oo/,t[j,j + 1) < o0.
Together with the assumption limsup,_ _,u[j,j+ 1) < oo, and the
regularity of u, we have sup;u[j,j + 1) < co so that ue E (R)

Again we can assume that p has period 27. It follows directly from
the equivalent definition (3.5) of functions in W (R) that there exist two
sequences {g;}, {/;} in W (R) such that

g~ h, f, 7 h, and lim J (g —f)=0. (4.10)
j—

Let {p;} and {g;} denote the corresponding periodic functions, then
D; N Do q; 7 4o, for some 2m-periodic functmns po and g,. Applying
Theorem 4.7 we have

2

2 ' ‘ T
[" 0 = aepetsas = im | * (= g0 dx =
0 -

0
oo g (k)

by (4.10). Hence p, = g, Therefore lim (4 * 1 (x) — q(x)) = 0. The last
statement also follows readily. Q.E.D.

Let W (R™) be the space of all locally Riemann integrable functions
on R* such that

o0

Z ”sg(x)”[,w[zk,zkﬂ) < 00.

k= —00
By a change of variables from Theorem 4.8, we have the following result.
Corollary 4.9. Let F be a non- negative Borel measurable functzon on

R™* such that lim supk_,oojzk 'F(s)ds/s < oo. Suppose 0 < gie W(R™)
is such that [ g (5)s'ds # 0 for all £€,R, and suppose
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lim Mw F(Ts)g, (s)ds — P(T)] =0

for some bounded multiplicative periodic function p of period 2 (i.e.
P(AT) = P(T)). Then for any g,€ W(R™), we have

tim | [ (98,0085 - 0(1)| -
— 00O 0
for some Q of the same type. Moreover if P(x) = Zw= L §2riklA

Q@) =>%__ bs*™* * then

b, = a, (8, (K)/§,(k)), keN

where g (k) = {3 g (s) s>"* ds.
The following result is the main application of Theorem 4.8.

Theorem 4.10. For 0 < a<n, fe B:(R"), the following two ex-
pressions are equivalent: _

J \W,(f) (X)|*dx — P(t)} = 0; (4.11)

nm[ Lo |f<y)|2dy——Q(T)]=0, @)
T—oo| T yl<T : : .

for some P, Q bounded multiplicative periodic functions with period A.
The functions P, Q are related by

b= a - P en,
@ (k)

where P(1/s) = Y2, a e ()= T b §(5) =
=5~ J2 (2ns) and w(s) = 5"~ 2, 1y ()-

Proof. Let P(s) = P(1/s). By (4.3) and (4.2), we can rewrite (4.11)
and (4.12) as:

[~ [0

lim F(Ts)¢p(s)ds — F(T)— =0;

T— o0 | JO

lim F(Ts)y(s)ds — Q(T)_ = 0.

T— oo 0




128 K.-S. LAU and J. WANG

The theorem follows from the Corollary 4.9 by observing the follow-
ing: '
(1) Since F(s) = s°{s _ |f(sw)l’du and fe B2 (R") we have

2k + 1 1 2k +1
J F(r)=dr = f U |f(ru)l? du}r““ldr <
2k r 2k Sy _1

1 n—a
< 2dx <
(2k+ 1) Lks x| < 2k +1 GOl dx

1

Tn—a

f | f(x)]Pdx < 0.
xl<T

(2) v, pe W(R*) (since ¢(s)=0(""*"") as s—0, and
=0 (s~ “*?) as s > ). |

3) jo @ (s)s'¢ds # 0 for all £eR: this follows from substituting
u=v="a=2rn=a+ 1—ifinto the identity for |3 J,(at)J,(a?)s™"ds

in ([Wa] p. 403), such that for £eR,
. J O (s)s¢ds = J J2Q2ms)s~@t1=19ds =
WJo 0 2

(e + | —i&)M(n—La—id)
2 (@—id)+ DI((a— i +n+1)

(4) 1
J l//(s)s"‘fds=J‘ s"““_l+i‘5ds=———1————;é0
0 0 n—a-+ié

for any £eR. Q.E.D.
Corollary 4.11. For 0 < a < n, fe B (R"),

im —— | /)P4 dy,

Tooo T"=% i<

if either ome limit exists, where C, ——l//(O)/gﬁ(O), with ¢ (0) =
= [ s 2, 2ms) ds and 7(0) = [ys" " lds=@n—a)”’

Corollary 4.12. Let 1 be a bounded Borel measure, then Theorem 4.10
and Corollary 4.11 also hold if we replace f by fi, and W,(f)(x) by

1 (B, (x))-
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5. Fourier Asympfotics

In this section we will make use of the Tauberian results in the last
section to improve several results of STRICHARTZ [S3].

Theorem 5.1. Let {S}}7_ | be contractive similarities satisfying the open
set condition with respect to U. Suppose that p is the self-similar measure
with positive weights {a}i". | such that 1 (0U) = 0. Then for B satisfying

m "2

T4l 0 P =1, we have

im | 5 | lacopax - Q(T)] -0,

T o

where Q > 0. Furthermore:

G If{—Ino:j=1, ..., m} is non-arithmetic, then Q = c for some
constant c. ,

(ii) Otherwise, let (InA)Z), A >1 be the lattice generated by

{—Ing;:j=1, ..., m}, then Q(AT) = Q (7).

Proof. By Theorem 3.7, Corollary 4.12 all the conclusions except
that Q > 0 hold. For this we let H (T) = ——lzf,x, <rlA (X)) dx, if Qis not
T~

strictly positive then there exists a 7y > A such that lim, , . H(T,A%) =
= Q(Ty) = 0. Hence for any 1 < T < T,

n— f3

T;
|A(x)? dx < =— H(Tp).
fmsTo =7 "

1
7"~ F

H(T) <
Hence H(T2%) < 2 — H(T; 2*) for all k 3 0. This will force Q = 0 and

imply lim,_, Vs(¢; u) =0 (Corollary 4.5). It contradicts Theo-
rem 3.5 (or Theorem 3.7). Q.E.D.

We remark that the above theorem extends ([S3], Coroll-
ary 5.3), where the contractive similarities must satisfy the strong
open set condition, and the above limit is proved in a weaker
sense.

For any positive Borel measure g on R” and for any Borel
measurable function f, we use u, to denote the measure
- u(E) = |pfdu for any Borel subset E. In [S1], STRICHARTZ obser-
ved that several classical theorems can be summaried as

9 Monatshefte fiir Mathematik, Bd. | 15/1-2
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im [ wwra= | 1P fere,.
T T"7% Jl<T R :

where u is the a-Hausdorff measure and @ =0, 1, ..., n. This identity
cannot be extended to non-integral « in general, the reader can refer
to [S1] and [L1] for various inequality analogs If i is a self-similar
measure with natural weights (i.e. a; = Qj where Z 1Qf’ = 1) and
{S;}j~ | satisfies the strong open set condltlon STRICHARTZ ([S3], Cor-
ollary 5.3) has some success in extending the above identity. In the
following we will sharpen his result with a much simpler proof. Recall
the u is locally uniformly a-dimensional if u (B, (x)) < cr® for any ball
B.(x)in R" and 0 < r < 1. If u is a self-similar measure with natural
weights, then p is locally uniformly a-dimensional.

Lemma 5.2. Let u be a locally uniformly a-dimensional positive
measure, then there exist ¢, and c, such that for any fe L*(dp), the
following inequalities

su dx < ¢ ”f”iz(d,u)a

O<t<l f

f IOy < e f P

sup

hold.

Proof. The first inequality can be obtained using ([L1], Coroll-
ary 2.4). It also follows from the following simple proof: By Schwartz
Inequality and a change of variables, we have

1

(nte

n+a

f 11, (B, (0P dx = ( NG dﬂ(é‘)>2 dx <

o/

(u (B, (x)- |f<§):2du<§>) dx <

B,(x)

,
<< f T O (OP du (&) dx =

n(J\ 28,8 (X)dx> LF(EPdu(E) <

le O du (&) = c; /2y
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To prove the second inequality, we need observe that ( ,ufje B2 ([L1],
Theorem 3.5) so that Theorem 4.4 can be applied to the ﬁrst inequality
and yields the result. Q.E.D.

For any Je A, we define f, = > then Ky = ay iy By a change of
variable, we have
1 1
T Hy, (B, (x)) dx = a] — - 17 (B, (x)) dx =
=a’o; P(P(o; ') +0(1)) = (by Theorem 3.7)
=a;P(t) +o(1) - (5.3)
as t = 0. Also for any J # J’ with |J| = | J’|, the same argument as in

Lemma 3.6 yields

i | 4, (B, (), (B, ()

= ayas tim | (B, 0001y (B(0) v = 0. (5.4
Theorem 5.3. Suppose that u is a self-similar measure with ndtziral

weights a; = 07", and suppose the open set condition holds with the open
set U satisfying u(0U) = 0. Then for any fe L*(du) we have

( " f |(ue (B ()" dx — P(t)f | flzdu) = 0; (5.5)

lim (
T o0 Tn_ﬂ

where P and Q are defined in Theorem 3.7 and Theorem 5.1 respectively.
In particular, if { 0;} is non-arithmetic, then there exist c,, ¢, > 0 with

fl 5Oy — o) [1rpad) =0, 9

2 gy — f P du

lim —<! fl e

T— T”_ﬁ

for any fe L*(p).

Proof. For any feL*(du), we may approximate f in L*(du) by
functions of the form ), _ v ¢, ;. By (5.3) and (5.4) it is easy to see that
(5.5) is true for such functions. Hence we may obtain (5.5) for any
fe L*(du) throught a routine limiting argument because of the first

Q%
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inequality of Lemma 5.2. Again using the Tauberian Theorems in
Section 4 we can obtain (5.6) from (5.5). Q.E.D.

References

[B] BeneDETTO, J.: The spherical Wiener-Plancherel formula and spectral estimation.
SIAM J. Math. Anal. 22, 1110—1130 (1991).

[BBE] BENEDETTO, J., BENKE, G., Evans, W.: An n-dimensional Wiener-Plancherel
Formula. Adv. App. Math. 10, 457—480 (1989).

[Be] BENKE, G.: A spherical Wiener-Plancherel Formula. J. Math. Anal. Appl. To
appear.

[CL] CHEN, Y. Z., Lau, K. S.: Wiener Transformation on functions with bounded
averages. Proc. Amer. Math Soc. 108, 411—421 (1990).
- [F] FALCONER, K.: The Geometry of Fractal Sets, (2nd edition) Cambrldge University
Press. 1985.

[Fe] FELLER, W.: An Introduction to Probability Theory and its Application. Vol. 2 (2nd
edition). New York: Wiley. 1971.

[HL] Harpy, G., LitTLwooD, J.: Some properties of fractional integrals. Math. Z. 27,
565—606 (1928). '

[He] Hew, C.: Wiener Amalgam Spaces in Generalized Harmonic Analysis and Wavelet
Theory. Dissertation (University of Maryland). 1990.

[H] HurcHinsoN, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30,
713—747 (1981).

[HL] Hu, T. Y., LAy, K. S.: The sum of Rademacher functions and Hausdorff dimen-
sion. Math. Proc. Cambridge Philos. Soc. 108, 91—103 (1990).

[La] LALLY, S.: The packing and covering function of some self-similar fractals. Indiana

“Univ. Math. J. 37, 699—709 (1988).

[L1] Lau, K. S.: Fractal measures and the mean p-variations. J. Funct. Anal. 108, 427
—457 (1992).

[L2] Lau, K. S.: Dimension of singular Bernoulli convolutions. J. Funct. Anal. To
appear.

[LL] Lau, K. S., LEE, J.: On generalized harmonic analysis. Trans. Amer. Math. Soc.
259, 75—97 (1980).

[S1} StrIiCHARTZ, R.: Founer asymptotics of Fractal measure. J. Funct. Anal. 89,
154—187 (1990).

[S2] STRICHARTZ, R.: Self-similar measures and their Fourier transformation I. Indiana
Univ. Math. J. 39, 797—S817 (1990).

[S3] STRICHARTZ, R.: Self-similar measures and their Fourier transformation II. Trans.
Amer. Math. Soc. To appear.

[SW] StEIN, E. M., WEIss, G.: Introduction to Fourier Analysis on Euchdean Spaces.
Princeton University Press 1971.

[T] TAYLOR, M.: Pseudodifferential Operators. Princeton University Press. 1981.

[Wa] WATsON, G. N.: A Treatise on the Theory of Bessel Functions. (3rd. ed.). Cam-
bridge University Press. 1966.

[Wi] WENER, N.: The Fourier Integral and Certain of its Apphcatlons Cambridge
University Press. 1988.

KA-SING LAU and JIANRONG WANG
Department of Mathematics and Statistics
University of Pittsburgh ‘

Pittsburgh, PA 15260, USA




